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Aharonov-Bohm effect in spherical billiard
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Using Gutzwiller’s periodic orbit theory, we study the quantum level density of a spherical billiard in the
presence of a magnetic flux line added at its center, especially discuss the influence of the magnetic flux
strength on the quantum level density. The Fourier transformed quantum level density of this system has
allowed direct comparison between peaks in the level density and the length of the periodic orbits. For
particular magnetic flux strength, the amplitude of the peaks in the level density decreased and some
of the peaks disappeared. This result suggests that Aharonov-Bohm effect manifests itself through the
cancellation of periodic orbits. This phenomenon will provide a new experimental testing ground for
exploring Aharonov-Bohm effect.

OCIS codes: 020.0020, 070.2590, 300.6300.

The connection between the quantum effect of a parti-
cle and its classical motion in a given potential has at-
tracted much interest. Advances in lithographic tech-
niques and crystal growth have made it possible to pro-
duce very small and clean devices, such as nanodevices[1].
The electron in such devices is confined to two or more
spatial dimensions through gate voltage, which can be
considered as a quantum billiard. Quantum billiard have
attracted many interest in many fields[2−5]. Many the-
oretical methods have been developed to study the dy-
namical behaviour of a quantum billiard. Among them,
periodic orbit theory (POT)[6] has rapidly become one of
the most useful and intuitive semiclassical methods as it
can be employed to make very direct connections between
the energy spectrum of a quantum system and the peri-
odic orbit of the corresponding classical system. In the
previous studies, many researchers have focused their at-
tention on the two-dimensional (2D) billiard system, such
as the square billiard, 2D triangular billiard, circular or
annular billiard etc.[7−12]. As for the three-dimensional
(3D) billiard, the research is very little. In Ref. [13], we
studied the correspondence between the quantum spectra
of the cubic billiard and the length of the classical orbits
of this system. But as to the influence of the magnetic
flux on the quantum spectra of the 3D system, none has
given the discussion.

In this paper, we investigate a 3D spherical billiard
with a singular magnetic flux line added at its center. In
this system, the Aharonov-Bohm effect should be taken
into account[14]. As we all know, the Aharonov-Bohm
flux line has had a rather spectacular effect on physics.
It provides a compelling example of quantum nonlocal-
ity. Largely because of this example, it is now clearly
understood that charged quantum particles have phase
interference effects originating from a magnetic field that
vanishes in all regions accessible to the particle. Although
this purely quantum effect has no directly corresponding
classical physics, it is related to the scattering of a classi-
cal charge neutral wave from a vortex. The results show
that the effect of the magnetic flux can be described by
the addition of the Aharonov-Bohm phase to the classi-
cal action, which leads to a drastic modifications to the
quantum level density.

First, we consider a billiard moving in a 3D infinite

well potential with the radius R (without the magnetic
flux). The potential is described by

V (r, θ, φ) =
{

0, 0 < r ≤ R, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ π
∞, otherwise .

(1)

The solution of the corresponding 3D Schrödinger
equation is given by[15]

ψ(r, θ, ϕ) = Ckljl(kr)Ylm(θ, ϕ), (2)

where Ckl is the normalized constant, jl(kr) are the
spherical Bessel functions of order l. They are related
to the cylindrical Bessel functions of half-integral order
by jl(kr) =

√
π/2krJl+1/2(kr). The wave number k is

related to the energy by k =
√

2μE/η2 and the energy
eigenvalues are quantized under the boundary conditions
at the infinite wall at r = R, namely jl(kR) = 0. The
quantized energies are given by

E(n,l) =
η2k2

(n,l)

2μ
=
η2a2

(n,l)

2μR2
, (3)

where a(n,l) denotes the zeros of the Bessel function of
order l and n counts the number of the radial nodes. Be-
cause of the spherical symmetry in this billiard system,
each such state has a degeneracy given by d(n,l) = 2l+1.

In the periodic orbit theory, one of the most important
physical quantities is the density of energy states. As
in Ref. [6], the energy state density can be split into a
smoothly, slowly varying part (ρ0(E)) and some oscilla-
tory terms, which are dominated by the classical periodic
orbits whose actions, Sγ(E), correspond to periodic orbit
or closed paths

∞∑
n=1

δ(E − En) ≡ ρ(E)

= ρ0(E) +
∞∑

p=1

∑
γ

ργ,p cos
[
p

(
Sγ(E)
η

− φγ

)]
, (4)
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where each periodic orbit is characterized by a label
γ = 1, · · · ,∞ and p denotes all possible repetitions
of such trajectories (p = 1, · · · ,∞), φγ is the phase
modification in the path integral.

The classical periodic orbits in the spherical well have
been discussed at length[16]. They consist of planar tra-
jectories characterized by two integers, p and q (p ≥ 2q),
where p describes the number of hits on the walls during
one period, and q is the number of revolutions, the orbit
encircles the center during the fundamental period. This
condition can be written as pΦ = q · 2π, where Φ is the
angle subtended by the chord length between successive
bounces with the spherical containing walls. The length
of a primitive orbit is given by

L(p, q) = p[2R sin(
Φ
2

)] = p[2R sin(
πq

p
)]. (5)

If p and q have common factors, such a (p, q) pair can
be thought of as representing multiple repetitions of the
primitive trajectories. Because of the momentum con-
servation, the motion of the particle is determined by its
direction and position. All the periodic orbits for the
spherical billiard are regular polygons except the diame-
ter orbit (see Fig. 1). Some of the path lengths and their
repetitions with L(p, q) ≤ 14.0R are given in Table 1.

Fig. 1. Some periodic orbits in the spherical billiard. (a) Di-
ameter orbit; (b)—(h) regular polygans orbits.

Table 1. Values of the Path Length L/R ≤ 14.0 for
Periodic Orbits in the Spherical Billiard

(p, q) L(p, q) and (p, q) L(p, q) and

Recurrence Below Recurrence Below

L/R ≤ 14.0 L/R ≤ 14.0

(2, 1) 4.00, 8.00, 12.00 (5, 2) 9.510

(3, 1) 5.196, 10.392 (7, 2) 10.945

(4, 1) 5.657, 11.314 (9, 2) 11.570

(5, 1) 5.878, 11.756 (11, 2) 11.894

(6, 1) 6.00, 12.00 (13, 2) 12.082

(7, 1) 6.074, 12.148 (15, 2) 12.202
...

...
...

...

(∞, 1) 6.283, 12.566 (∞, 2) 12.566

(7, 3) 13.649

What interested us most is the oscillatory term of Eq.
(4). In k-space, we write the equivalent density of states
as

∞∑
n=1

δ(k − kn) ≡ ρ(k)

= ρ0(k) +
∞∑

p=1

∑
γ

ργ,p cos[p(kLγ − φγ)]. (6)

By taking the Fourier transform of the above equation,
we get the Fourier transformed quantum energy level
density:

ρ(L) ≡
∑
nl

d(n,l)

k
3/2
(n,l)

eik(n,l)L. (7)

The weighting factor in the denominator is added to
increase the sensitivity to lengthen classical paths; the de-
generacy factor d(n,l) = 2l+ 1 simply counts the number
of levels for each value of k(n,l). If we evaluate the Fourier
transform ρ(L) of the wave number spectrum by Eq. (7),
we should find a series of sharp peaks corresponding to
the lengths of classical periodic orbits.

Next, we consider the spherical Aharonov-Bohm bil-
liard. This system consists of a charged point particle
moving in a spherical enclosure in three dimensions, with
a magnetic flux line added at its center and perpendicular
to the x-y plane. This is equivalent to a charged particle
enclosed by a spherical boundary interacting with mag-
netic field of an infinitely thin and long solenoid enclos-
ing a finite flux φ. For the 3D billiard, the Lagrangian
is given by

L =
1
2
m�v 2 +

e

c
�v · �A, (8)

where �A is the vector potential. In cylindrical coordi-
nates, assuming the magnetic flux line lies along the z-
axis, it can be written as �A = φ

2πρ�eθ. Here φ is the
magnetic flux through the solenoid. This corresponds
to a magnetic field B which has a δ function singularity
at the origin and is zero everywhere else. Substituting
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�A into Eq. (8), the Lagrangian in spherical coordinates
(r, θ, ϕ) is simplified to

L =
1
2
m(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2) +

eφ

2πc
θ̇. (9)

As a consequence of the well-known Aharonov-Bohm
effect[14], the vector potential A adds to the quan-
tum phase along a path from r1 to r2 by an amount
Δα = e

η

∫ r2

r1
�A(r) · d�r and the wave function of the parti-

cle acquires a flux-dependent phase change upon rotation
around the solenoid. For a nonzero flux φ, the particle is
classically not allowed to penetrate the flux line, because
its energy would become infinite. For r �= 0, the Lorentz
force on the particle is always zero and the classical equa-
tions of motion remain unchanged. The geometries of the
classical orbit with p > 2q therefore do not change, they
are the same as ones given in Fig. 1 except the diameter
orbit. However, the quantum spectrum does depend on
the flux φ.

For integer values of the canonical angular momen-
tum Λ, the energy eigenvalues and wave functions are
determined by solving the corresponding radial part of
the Schrödinger equation, with the dimensionless flux
strength α = eφ/(2πηc),

η2

2m

(
−1
r

∂

∂r
r
∂

∂r
+

1
r2

(Λ − α)2
)
ψi = εiψi. (10)

The boundary condition is ψi(R) = 0. The quan-
tity (Λ − α)2 can take fractional values, if we as-
sume that α can take a continuous range of values
between 0 and 1. The boundary condition together
with the condition of normalizability of the quantal
wave functions finally yields the energy eigenvalue as
εi = ε|Λ−α|,n = E0X

2
|Λ−α|,n, in which E0 = η2/(2mR2),

j|Λ−α|(X|Λ−α|,n) = 0.
From the above formula, we find that the presence of

the flux line in the spherical billiard simply changes the
order of the Bessel functions from integer to fraction,
the symmetry α ↔ 1 − α in the quantum spectrum al-
lows the restriction to 0 ≤ α ≤ 0.5. For integer flux
α = 0, 1, 2, · · · , the quantum spectrum is unaltered by
the flux line. Therefore, the formula for the Fourier
transform of the quantum energy level density (Eq. (7))
is still valid except that the energy E is replaced by ε.

Using Eq. (7), we calculate the Fourier transformed
quantum level density |ρ(L)|2 (using the lowest eigen-
value N = 1000). Figure 2 plots the results of |ρ(L)|2
versus L(p, q) ≤ 14.0R with different magnetic flux
strengths α. Figure 2(a) is the quantum energy level
density without the magnetic flux line, α = 0. This case
is equivalent to the simple spherical billiard[16]. There
are many peaks in the plot and each peak corresponds to
the length of one periodic orbit given in Table 1. With
the increase of the flux strength α, the heights of these
peaks are reduced. At α = 0.25, all the periodic or-
bits with L > 4R are disappeared. For α > 0.25, they
revive again. Their disappearance at α = 0.25 can be
seen as a consequence of the Aharonov-Bohm effect. We
also find two prominent characteristics. First, the peak
at L = 4R exists for all α > 0, except it decreases at
α = 0.25. Second, there appears a new signal at L = 2R,

Fig. 2. Fourier transformed quantum level density |ρ(L)|2 ver-
sus L(p, q) ≤ 14.0R with different magnetic flux strengths α
(using the lowest eigenvalue N = 1000).

corresponding to a reflected half –diameter orbit, with
an amplitude increasing till up to α = 0.5. The rea-
sons of these phenomena can be interpreted as follows:
when a wave hits the flux line, it is diffracted; part of
it is reflected and part is transmitted. Therefore, the
two signals at L = 2R and L = 4R correspond to the
reflected and transmitted waves, respectively. The ra-
tio of the reflected to transmitted waves depends on the
flux strength, it is approximately 1:2. The fact that the
L = 4R peak is suppressed at α = 0.25 is obviously due
to the possibility of the wave to bypass the flux line on
either side: the two events have opposite phases, so that
their contributions cancel exactly at α = 0.25 as in the
classical Aharonov-Bohm experiment. For α = 0.25, the
tiny signals at L = 4R and hardly visible ones at L = 6R
and 8R are actually the higher harmonics with the repe-
titions of the reflected half-diameter orbit.

In summary, we have calculated the quantum level den-
sity of a spherical billiard with a magnetic flux line added
at its center. The results show that the magnetic flux
line has significant influence on the quantum level den-
sity. The Fourier transformed quantum level density of
this system has allowed direct comparison between peaks
in the level density and the length of the periodic orbits.
From which we can testify the importance of the corre-
spondence between the quantum effect and the classical
motion. From Table 1 we can see, when the magnetic
flux added to the billiard, its classical motion does not
change. But because of the Aharonov-Bohm effect, the
wave function of a particle acquires a phase 2πα upon
each rotation around the flux line. Thus its quantum
level density is modified drastically. For particular mag-
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netic flux strength, the amplitude of the peaks in the level
density decreased and some of the peaks disappeared.
This can be seen as a result of the Aharonov-Bohm effect,
which manifests itself through the cancellation of periodic
orbits. We hope that our result will provide a new ex-
perimental testing ground for exploring Aharonov-Bohm
effect and quantum chaos.
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